FIN 300

Risk and Return Lecture 10

TOPICS COVERED

- Expected Return
- Variance and Standard Deviation
- Portfolios
- Portfolio Variance
- Diversification and Risk

EXPECTED RETURN

- Point-estimate of average belief
- Many possible versions of the future

$$E(R) = \sum_{s=1}^{S} Pr(s) \times R_s$$

- ullet possible states of the world (s)
- ullet R_s is the return to the stock in state s
- ullet $Pr(R_s)$ probability of R_s

EXAMPLE

Suppose there was a 50% probability that a stock has a return of 5% and a 50% probability the stock had a return of 15%. The expected return E(R) would be:

$$E(R) = 50\% \times 5\% + 50\% \times 15\% = 10\%$$

$$E(R) = 0.5 \times 0.05 + 0.5 \times 0.15 = 0.1$$

We could also have calculated the expected return in a similar way if there was a 99% probability of a 5% return and a 1% probability of a 15% return:

$$E(R) = 0.99 \times 0.05 + 0.01 \times 0.15 = 0.051$$

Consider three states of the world (for next year): good, bad, and ugly. The probability that we have a good state is 50%. There is a 25% probability for bad and 25% for ugly. Suppose our stock earns 30% in the good state, 0% in the bad state, and -30% in the ugly state. What is the expected return on our stock?

$$E(R) = 0.5 \times 0.30 + 0.25 \times 0 + 0.25 \times -0.30 = 0.075$$

VARIANCE

- Variance is a measure of dispersion for the possible future returns
- This tells us, overall, how far away the various possible outcomes are from the expected value

$$Var(R) = \sigma_R^2 = \sum_{s=1}^S Pr(s) \times (R_s - E(R))^2$$

EXAMPLE

From our previous example, we can calculate the value of the return's variance:

$$egin{aligned} \sigma_R^2 &= 0.5 imes (0.30 - 0.075)^2 \ &+ 0.25 imes (0 - 0.075)^2 \ &+ 0.25 imes (-0.30 - 0.075)^2 \ &= 0.0619 \end{aligned}$$

STANDARD DEVIATION

To calculate standard deviation, we simply take the square root of the variace:

$$\sigma_R = \sqrt{\sigma_R^2} = \left[\sum_{s=1}^S Pr(R_s) imes (R_s - E(R))^2
ight]^{rac{1}{2}}$$

From our example:

$$\sqrt{0.0619} = 0.249$$

PORTFOLIOS

- Collection of investments
- Multiple assets
- Portfolio weights are asset value divided by total value

$$w_i = rac{Value_i}{\sum_{i=1}^{N} Value_i}$$

EXAMPLE

Suppose I had money invested in two assets: \$300 in company X and \$100 in company Y.

The total value of my portfolio would be \$400.

My weight in company X would be $\frac{\$300}{\$400}$, or 0.75.

$$w_X = 0.75$$
; $w_Y = 0.25$

EXPECTED RETURN

- Relatively straightforward
- Sum of each stock's weight multiplied by expected return:

$$E(R_p) = \sum_i^N w_i imes E(R_i)$$

EXAMPLE

From our example, suppose companies X and Y had expected returns of 0.125 and 0.06 respectively. Our portfolio's expected return would be:

$$E(R_p) = 0.75 \times 0.125 + 0.25 \times 0.06 = 0.1088$$

PORTFOLIO VARIANCE

- Slightly more complicated
- Volatility can be partially cancelled out by diversification
- Intuition:
 - 5 friends play poker
 - Each person's balance fluctuates
 - Total cash at table is constant
 - Very negative correlation in returns here

- Calculating portfolio variance requires that we know an additional piece of information
- Covariance
- Calculation of covariance:

$$\sigma_{x,y} = \sum_{s}^{S} Pr(s) \left[\left(R_{s,x} - E(R_x)
ight) imes \left(R_{s,y} - E(R_y)
ight)
ight]$$

EXAMPLE (COVARIANCE)

Let's say that there are two states of the world "Bull Market" and "Bear Market" with equal probability (0.5). Let's say we also know the returns to stocks X and Y in these two states:

	R_X	R_Y
Bull Market	.35	.08
Bear Market	10	.04

First, we should calculate $E(R_X)$ and $E(R_Y)$:

$$E(R_X) = 0.5 \times 0.35 + 0.5 \times (-0.10) = 0.125$$

$$E(R_Y) = 0.5 \times 0.08 + 0.5 \times 0.04 = 0.06$$

At this point, we can apply the covariance formula directly:

$$egin{aligned} \sigma_{X,Y} &= 0.5[(0.35-0.125) imes(0.08-0.06)] \ &+ 0.5[(-0.10-0.125) imes(0.04-0.06)] \end{aligned}$$

PORTFOLIO VARIANCE FORMULA

The variance portfolio of a portfolio with two stocks (X and Y) can be calculated in the following way:

$$\sigma_P^2 = w_X^2 \sigma_X^2 + w_Y^2 \sigma_Y^2 + 2w_X w_Y \sigma_{x,y}$$

Returning to our example with stocks X and Y, we'll also need to calculate their respective return variances:

$$\sigma_X^2 = 0.5 imes (0.35 - 0.125)^2 + 0.5 imes (-0.10 - 0.125)^2 = 0.050$$

$$\sigma_V^2 = 0.5 imes (0.08 - 0.06)^2 + 0.5 imes (0.04 - 0.06)^2 = 0.0004$$

Once we know, σ_X^2 , σ_Y^2 , $\sigma_{x,y}$ and the portfolio weights (0.75, and 0.25 from our example), we can finally calculate the portfolio's return variance:

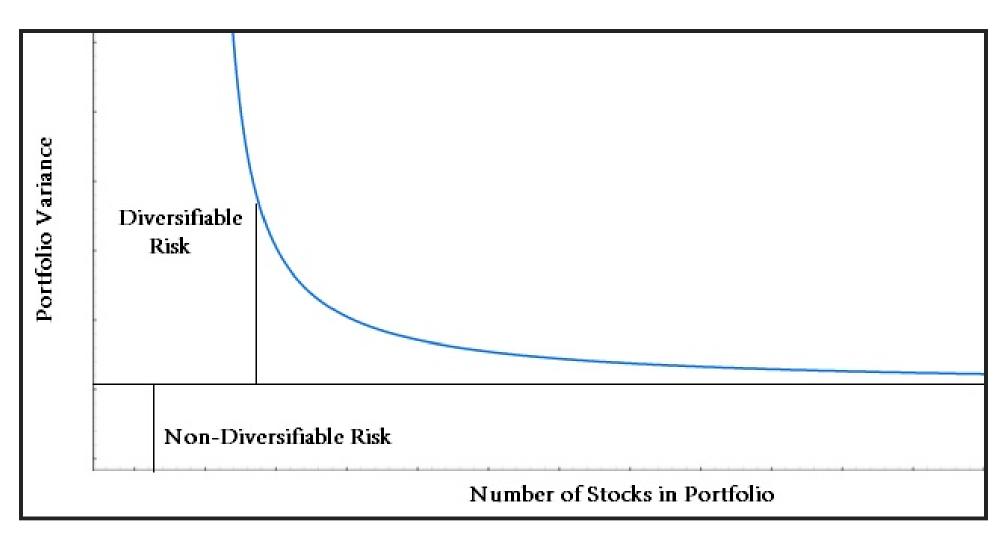
$$egin{aligned} \sigma_P^2 &= (0.75^2) imes (0.0506) + (0.25^2) imes (0.0004) \ &+ 2 imes (0.75) imes (0.25) imes (0.0045) \end{aligned}$$

$$\sigma_P^2 = 0.030189; \sigma_P = \sqrt{0.030189} = 0.17375$$

DIVERSIFICATION AND RISK

- Don't put all your eggs in one basket
- Not perfectly correlated
- Generalize the portfolio variance formula:

$$\sigma_P^2 = \sum_{i=1} w_i^2 \sigma_X^2 + \sum_{i=1} \sum_{i
eq j} w_i w_j \sigma_{i,j}$$



- Diversifiable Risk
 - Idiosyncratic Risk
 - Non-Systematic
- Non Diversifiable Risk
 - Market Risk
 - Systematic Risk